

    
      
          
            
  
Welcome to DSAGEN’s documentation!

DSAGEN is a framework for designing decoupled-spatial architectures, a
class of programmable accelerators.  DSAGEN makes use of a variety of tools
for spatial-scheduling, compilation, simulation, ISA-generation, and hardware
generation.


Important

New to DSAGEN? Jump to the Setup page for setup instructions.
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DSA Framework Basics

These sections will walk you through the basics of the DSA framework:


	First, we will overview the framework and its goals/capabilities.


	Next, we will go over the components of the framework.


	Finally, we describe how to setup the repository.






	Setup
	Prerequisites

	Build

	Examples

	Prebuilt





	Overview

	DSAGEN Components
	Software Stack

	Workloads

	Functional Simulation

	RTL Generation and Simulation





	A Simple End-To-End Demo








            

          

      

      

    

  

    
      
          
            
  
Setup


Prerequisites

We highly recommend you use Docker [https://docs.docker.com/desktop/install/linux-install/] to setup
the environment. By downloading this Dockerfile [https://github.com/PolyArch/dsa-framework/blob/micro-tutorial/Dockerfile],
you can simply setup the environment by typing to build a docker image:

$ sudo docker build . -t polyarch/dsa-framework:latest





Then you can start a docker container by executing command below. The docker option -v /home/<user>/dsa-share:/root/dsa-share allows you to share files between
host machine and docker container.

$ sudo docker run -tid [-v /home/<your username>/dsa-share:/root/dsa-share] --name=overgen polyarch/dsa-framework:latest /bin/bash





Or, more aggressively, you can build the image and start the container with one command

$ sudo docker run -tid [-v /home/<your username>/dsa-share:/root/dsa-share] --name=overgen \
    `sudo docker build . | tail -1 | awk '{ print $3 }'` /bin/bash





NOTE: zsh [https://www.zsh.org/] is required. If we use the default bash,
the behaviors of our environement setup script are undesired.



Build

Our docker only resolves all the dependences, and clone the repos. Therefore, after the docker
container starts, you should build the framework infrastructures from the source code:

# Attach to docker container
$ sudo docker attach overgen

# Switch from `bash` to `zsh`, DO NOT use zsh when start docker container
$ zsh

# Inside the docker, enter dsa-framework root folder
$ cd /root/dsa-framework

# Initialize all submodules, SKIP this step if you are using docker
$ ./scripts/init-submodules.sh

# Setup dsa-framework environment variables
$ source ./setup.sh # setup environement variables

# Compile the entire dsa-framework
$ make all -j

# Please source chipyard/env.sh manually if this is a first time build
$ source chipyard/env.sh





NOTE: If you just want temporarily leave the container (detach, not close),
you should just <Ctrl-p><Ctrl-q> to detach, instead of typing exit.



Examples

To verify the repo is successfully built, you can

$ cd dsa-apps/demo
$ ./run.sh ss-vecadd.out





The command above make a simple vector addition example compiled by LLVM and simulated in Gem5.

All the compiled applications are developed by the same software development kit (SDK),
refer to SDK Section for more details.



Prebuilt

You can also download a pre-built docker image (~70GB) here [https://drive.google.com/drive/folders/1ymP61tObuChBcKl_1_cPC37o4DzbkHSU?usp=sharing], which
contains the entire dsa-framework with all toolchains built.

You can import the docker image and use dsa-framework by doing:

$ docker import <downloaded tar file>.tar polyarch/dsa-framework:latest









            

          

      

      

    

  

    
      
          
            
  
Overview

DSAGEN 1 is a research infrastructure for studying programmable accelerators
from the perspective of programming, ISAs, microarchitecture, and scaling.

The principle of this framework is that spatial accelerators can be representend
as a graph of simple primitives like network switches, processing elements,
memory, and synchronoization.
We call this an architecture description graph (ADG).
This graph is used not only as a specification of the underlying hardware
but also an abstraction to the compiler.
The compiler parses the ADG, and map the program
(either C+Pragmas or low-level assembly for now) to the hardware.
The compiler will take care of figuring out
the bitstream format based on the components of the ADG.  Finally, optimized
kernels are produced as output, composed of control code and the accelerator
bitstream.  We use a control code to sequence through the accelerator phases,
as this reduce the complexity of what is required in most accelerators.

What design space does DSAGEN target?


Broadly, DSAGEN targets decoupled spatial designs.  By “spatial” we mean
designs that expose the underlying network to the ISA; depending on the
design, other low-level details like operand storage and synchronization of
operations are also exposed to the ISA.  By “decoupled” we refer to designs
which seprate memory pipelines from computation pipelines, so that each can have
their own specialized primitives. 2




TODO(@Jian Weng): Put a figure of mapping program to decoupled-spatial here.

What can DSAGEN be useful for?


	In principle it can be used to study many different aspects of accelerator stacks.


	At the basic level, DSAGEN can be used as a baseline for other accelerators.  DSAGEN
is fairly domain-agnostic, so it can be seen as a non-specialized spatial architecture
baseline.


	DSAGEN can also be used in studies of novel spatial architecture features.  One can add
a new feature, and expose it at the ISA level fairly easily (and with a little more effort
add a compiler pass and maybe pragmas to support it).


	The interactions between CPUs and accelerators are also extremely intersting, including
caching, multicore, networks, etc.  DSAGEN
has an interface with a gem5 core, can be extended to other cores).  It currently uses
RISCV as the interface.


	DSAGEN has a spatial architecture compiler that can be independently useful for various
other architecture proposals, with hopefully modest implementation overhead.


	It is our end-goal to be able to deliver reliable hardware generation, although the
infrastructure is in the very early stages of being able to supply that. 3









	1

	DSAGEN can be both used as both Domain-Specific Accelerator Generator and Decoupled Spatial Architecture Generator.



	2

	In practice, the lines between memory and computation are blurred, as some memory
streams embed computation, and sometimes we are computing an address.  The principle
remains, however.



	3

	We are a small team, and composable hardware design accross the stack takes time.  If you
are interested in contributing, please let us know!








            

          

      

      

    

  

    
      
          
            
  
DSAGEN Components


Software Stack

In term of functionality, the compilation of decoupled-spatial architecture can be separated into two aspects,
host control command, and spatial mapping. We develop a spatial scheduler to map the dataflow graph onto
the spatial architecture, and this is available in repo spatial-scheduler. Refer [placeholder] for more
details on the spatial architecture programming interface and mapping.

In term of programming interface, we expose both manually embedded assembly code, and high-level language
programming interface. We use RISCV toolchains to extend the ISA encoding for our decoupled-spatial architecture.
The ISA encoding patch as well as the macro intrinsics are available in repo dsa-riscv-ext.
The patch will be applied on riscv-gnu-toolchain (as a part of our chipyard repo). We use riscv-gnu-toolchain
for binary generation.

In order to provide a productive programming interface, we define pragma hints (refer [placeholder] for more
detials). We extend the Clang frontend to parse and encode these pragmas, and we implement an LLVM pass to
take advantage of this additional information and transform the program into the decoupled-spatial ISA. All
these are available in repo llvm-project.



Workloads

We have three benchmark suites implemented for demonstration.


	MachSuite:
	Machsuite [http://breagen.github.io/MachSuite/] is a benchmark suite intended for accelerator-centric research.  A subset of workloads are implemented.



	DSP:
	Digital signal processing (DSP) is a benchmark suite from our prior work REVEL [http://https://ieeexplore.ieee.org/document/9065593] for applications with moderate irregularity and imbalanced execution frequency within loop bodies.



	Xilinx Vision:
	Xilinx Vitis [https://github.com/Xilinx/Vitis_Libraries] is a benchmark suite for HLS demonstration. We select a subset
of workloads to target.





To develop your own applications, we also provide SDKs for both manual and high-level programming (refer [placeholder] for more details).



Functional Simulation

Our framework extends gem5 by integrating a spatial architecture simulator to simulate the functionality and model the performance
of our decoupled-spatial architecture.



RTL Generation and Simulation

@Sihao





            

          

      

      

    

  

    
      
          
            
  
A Simple End-To-End Demo

this is a bunch of filler text. it’s not really important.  it’s just
here to make the demo look more realistic.  it’s not really important.
it’s just here to make the demo look more realistic.  it’s not really
important.  it’s just here to make the demo look more realistic.




            

          

      

      

    

  

    
      
          
            
  
MICRO 2022 Tutorial


[image: ../_images/dsagen.png]


Organizers


Sihao Liu [http://web.cs.ucla.edu/~sihao/], Jian Weng [http://were.github.io/], Dylan Kupsh [https://web.cs.ucla.edu/~dkupsh/], Tony Nowatzki [http://web.cs.ucla.edu/~tjn/]

PolyArch Research Group [https://polyarch.cs.ucla.edu/].

University of California, Los Angeles

Date/Time: Sunday October 2nd, 1:00pm - 5:00pm CDT





Tutorial Overview


[image: ../_images/tutorial.png]

Figure 1: Programmable Accelerator Synthesis.



As a reaction to the slowing of transistor scaling, significant research has emerged for specialized accelerators, because of their promise of high performance and energy savings.  While extremely effective, they require intensive engineering of hardware and software – an effort that must be repeated when new domains arise and when algorithms change.

Ideally, one would be able to generate accelerators based on the behaviors and structure of target applications, and where these applications are specified in a stable and friendly programming interface.  In other words, we require the equivalent of high-level synthesis (HLS), but for programmable accelerators – programamble accelerator synthesis. Figure 1 highlights the high-level flow of this paradigm; the compiler simultaneously analyzes multiple kernels, then performs design space exploration using modeling, and ultimately produces optimized kernels along with the accelerator RTL.

The challenges with this paradigm include: How to represent a useful design space, that is broad, easily searchable, and enables significant specialization? How to compile programs from a general language without hindering specialization benefits? How to search this design space efficiently?

In this tutorial, we will present one such approach for programmable accelerator synthesis, along with a corresponding framework: DSAGEN, a research infrastructure including compilation, simulation and RTL implementation.



Syllabus and Schedule


[image: ../_images/stack.png]

Figure 2: The framework stack of DSAGEN.



Introduction (30 Minutes): [slides]


	The Decoupled-Spatial Programming Paradigm


	Composing Hardware with Essential Primatives


	The DSAGEN Framework Stack




Basic Programming (60 Minutes): [slides]


	Introduction to the Automated Compilation flow



	Annotating Programs with Pragmas


	Pragma parsing in clang and how llvm passes interpret to encode data accesses


	Spatial Mapper Algorithm overview for Decoupled Compuation and Visualization


	Generating Assembly Code and linking with gnu-riscv-gcc


	Simulating RISC-V binary with gem5









	Hands-on exercises:



	Change pragma as different compiler transformations


	Visualize the difference of spatial mapping


	Simulate RISC-V binary on gem5 simulator to show performance difference











10-Minute Break

Build your own Domain-specific Accelerator (60 Minutes): [slides]


	Introducing the concept of Architecture Description Graph (ADG)



	Design-space and micro-architecture DSA


	Exporting designs as ADG and simulating RISC-V binary on RTL-level


	Analytical Power/Performance/Area modeling









	Hands-on exercises:



	Compose a larger ADG with new operation and different topology by DSL


	Visualize the difference of ADG and spatial mapping


	Showing difference of estimated power/performance/area on different hardware designs


	Performance analysis on how hardware feature affect performance and hardware consumption











10-Minute Break

Automatic Design Space Exploration: (40 Minutes) [slides]


	Introduction to the Design Space Explorer



	An end-to-end flow from a set of programs to auto-generated accelerators


	Introducing DSE to achieve better Power/Performance/Area


	Key DSE-specific techniques









	Hands-on exercises:



	Perform DSE on a small set of kernels


	Measure performance on generated accelerator


	Visualize the DSE process and generated accelerator designs













Installing DSAGEN

To build the DSAGEN Framework, you will need to install Docker. Please follow the instructions on the official docker website [https://docs.docker.com/engine/install/ubuntu/].

Start by cloning the repository:

$ git clone https://github.com/PolyArch/dsa-framework.git
$ cd dsa-framework





Build the docker image:

$ docker build .





Then, follow this Setup page to continue installation of dsa-framework.



Related Papers


	Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang, Licheng Guo, Jiuyang Liu, Maxim Zhulin, Lucheng Zhang, Jason Cong and Tong Nowatzki, “OverGen: Improving FPGA Usability through Domain-specific Overlay Generation” in MICRO 2022.


	Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang and Tony Nowatzki, “DSAGEN: Synthesizing programmable spatial accelerators” in ISCA 2020.


	Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu and Tong Nowatzki, “A hybrid systolicdataflow architecture for inductive matrix algorithms” in HPCA 2020.


	Vidushi Dadu, Sihao Liu and Tong Nowatzki, “Towards general purpose acceleration by exploiting common data-dependence forms” in MICRO 2019.


	Tong Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karu Sankaralingam, “Stream-Dataflow Acceleration” in ISCA 2017.











            

          

      

      

    

  

    
      
          
            
  
Instruction Set Architecture

In this section, the semantics of each decoupled-spatial assembly is explained.
We will also cover how to hack the GNU infrastructure to add new instructions.



	Extending RISC-V ISA
	Instruction Format

	Constraints

	Assembler Integration

	Binary Encoding
	Mnemonic Format

	Implementation
















            

          

      

      

    

  

    
      
          
            
  
Extending RISC-V ISA

This section gives you a quick tour to RISC-V ISA format and slots so that
the basic sense and implementation of extending the RISC-V ISA are covered.

These external links are involved, refer them for more details:



	The RISC-V Instruction Set Manual [https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf]


	risc-v opcode [https://github.com/riscv/riscv-opcodes]


	RISC-V GNU Compiler Toolchain [https://github.com/riscv/riscv-gnu-toolchain]








Instruction Format

All the RISCV instructions are 32-bit vectors.
Please refer page 130 (# on the upper right of each page, not PDF reader page) of the
RISC-V manual [https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf]
for the format of these vectors.

To choose a proper format for your extended instruction, the number of src/dst
operands, the type of operands (imm/reg), and the number of bits to be encoded
should be considered. R, I, and S are recommended — B is just a complicated
version of S, and U and J have no funct3 field, which may occupy the whole
line of instruction slots (refer to next section
for more detials). Therefore, we have 32 bits in total: 7 bits are  occupied
by the opcode; 3 bits are occupied for funct3; each register occupies 5 bits
($2^5=32$ ISA registers); immediate operand can either be 7 or 11 bits.

The instruction format are described in the risc-v opcodes [https://github.com/riscv/riscv-opcodes]
repo, and you can open opcodes-rv32i, the most basic module of the RISC-V ISA,
for examples. To understand this file, we use
addi [https://github.com/riscv/riscv-opcodes/blob/03be826f17faedcaee7f60223f402850e254df0a/opcodes-rv32i#L24]
instruction as an example, and a correspondence to the ADDI row in page 130 can be made.
Both the figure and the text description are little endian format.

addi    rd rs1 imm12           14..12=7 6..2=0x04 1..0=3





rd, rs1, and imm12 describe the operands of this instruction; 14..12 describes funct3;
6..2 describes the opcode. According to Table 24.1 on page 129 (no page number on the PDF),
the first two bits are always 11.

For more information on the operand tokens appear in this file, refer to
this [https://github.com/riscv/riscv-opcodes/blob/03be826f17faedcaee7f60223f402850e254df0a/parse_opcodes#L17-L49]
for more details. This Python dict declares the bit range this token occupies.
The semantics of each token id can be understood by knowing their bit range,
acompanied with the figure of the instruction format.



Constraints

To understand the constraints of extending new instructions, we need to know:



	where are the available slots for the extended instructions, and


	some additional rules/standards/contraints of each slot.







Refer custom-0/1/2/3 cells in Table 24.1 on page 129. These four slots are reserved
for instruction extension.

Refer this file [https://github.com/riscv/riscv-opcodes/blob/master/opcodes-custom]
for the operand constraints of each instruction. The operand signature of each instruction should
be exactly the same as their corresponding slot in custom.

Do read this!! If you do not want to refactor the ISA aggresively when already having a large project!!
You cannot give funct3 random values. The meanings of the 3 bits of funct3 are critical:



	1: Send rs2 from host to the accelerator.


	2: Send rs1 from host to the accelerator.


	4: Receive a value from the accelerator to rd.







rs2 only appears when rs1 appears. Therefore, the bit of 1 cannot be enabled alone. Therefore,
1 and 5 cannot be funct3. Also, as mentioned above, if we want to use 0 as funct3, we cannot
use U-type format.



Assembler Integration

After designing how instructions look like in your mind, we need to integrate them to the compiler, both the
binary encoding and the text mnemonic. This is done by hacking the subrepo,
riscv-gnu-toolchain/riscv-binutils.



Binary Encoding

To integrate the binary encoding of the extended instruction, we want to replace the code segments
1 [https://github.com/riscv/riscv-binutils-gdb/blob/2cb5c79dad39dd438fb0f7372ac04cf5aa2a7db7/include/opcode/riscv-opc.h#L550-L597],
2 [https://github.com/riscv/riscv-binutils-gdb/blob/2cb5c79dad39dd438fb0f7372ac04cf5aa2a7db7/include/opcode/riscv-opc.h#L1106-L1129]
related to customized opcodes by the extended encoding.

In risc-v opcodes [https://github.com/riscv/riscv-opcodes], scripts are provided to generate these encoding
codes. Use the following command:

cat opcodes-custom | ./parse-opcode -c > snippet





Edit opcodes-custom to name the extended instructions, and define the operands.

Not every line of snippet is useful, open the file and find the corresponding lines.

Copy those lines and use them to replace the code segments mentioned above.


Mnemonic Format

To integrate the mnemonic (text) format of the extended instruction, we want to add additional rules below
this line [https://github.com/riscv/riscv-binutils-gdb/blob/2cb5c79dad39dd438fb0f7372ac04cf5aa2a7db7/opcodes/riscv-opc.c#L199].
The meaning of each column is:


	Name string;


	The default data width; zero means the same as machine bits; here I suggest to give 0;


	The module of the instruction belongs to; here I suggest just give “I”, the most basic module;


	The operand description; there is no document for the meaning of each letter, but you can refer to
this git issue [https://github.com/riscv/riscv-binutils-gdb/issues/243] and read the source code for more
details; typically, knowing s, t, j, d, and q are enough;


	For instructions without aliasing and pesudo representation, the next two columns can just give the MASK_*
and MATCH_* generated in snippet.


	I believe it should be something about the aliasing and pseudo thing too, and giving 0 should also suffice.






Implementation

This section includes some our design descisions. Though subjective, we hope this may more or less help your
development experience. An auto-patcher [https://github.com/PolyArch/dsa-riscv-ext/] is adopted.
Refer dsa-riscv-ext/Makefile for more details. The path to riscv-gnu-toolchain is specified on which the
patch is applied. A autopatcher helps:


	To minimize the invasion to the GNU toolchain and LLVM (so that the cost of rebasing will be minimized
when an upstream update is desired);


	To unify the code hacking interface on both GNU and LLVM;


	To automate the whole process of code modification by avoiding copy-and-pase, which is error prone.




Refer to isa.ext [https://github.com/PolyArch/dsa-riscv-ext/blob/master/isa.ext], I have a text format to
describe how the extended instructions look like. Then refer to the
Makefile [https://github.com/PolyArch/dsa-riscv-ext/blob/master/Makefile] and
auto-patch.py [https://github.com/PolyArch/dsa-riscv-ext/blob/master/auto-patch.py]
for how the involved files are modified to integrate the extended instructions.






            

          

      

      

    

  

    
      
          
            
  
Programming Interfaces

This section introduces programming interfaces of our DSAs. We provide both
high-level language and embedded assembly code, both in C, programming.
Both programming interfaces will be introduced through simple examples.

Because it requires a lengthy process to study the compiler flags and resolve
the header file dependencies, we provide software development kits (SDK) for a
better developer experience.



	Pragma+C Programming
	Pragmas

	Automated Compilation





	Embedded ASM and DFG











            

          

      

      

    

  

    
      
          
            
  
Pragma+C Programming

This section explains both C programming interfaces and
our software development kit, which allows
users to rapidly start writing your own applications. Please refer to
this repo [https://github.com/PolyArch/dsa-apps/tree/polyarch/sdk].


Pragmas

To avoid excessive compiler efforts, we adopt a C+pragma programming
interface. By simply annotating the program with modest pragmas,
the compiler can understand more additional information and encode them in
IR metadata.

Here we extend three pragmas:



	#pragma ss dfg [unroll(x)]: This pragma annotates an innermost loop or a compound statement (refer  this repo [https://github.com/PolyArch/dsa-apps/tree/polyarch/compiled/Dsp/cholesky.c] for more details), which indicates the memory accesses and computaiton within the annotated region will be mapped to our decoupled-spatial execution.






	The unroll clause allows users to manually tune the resource occupation of the code region. If x=-1, the compiler will
automatically explore the unrolling degree.








	#pragma ss stream: This pragma annotates a loop, which indicates all the memory accesses below are restricted. This also indicates the highest loop level to encode memory operations in coarse grain stream commands.


	#pragma ss config: This pragma annotates a compound statement, which indicates all the annotated dfg are concurrent on the spatial architecture.









Automated Compilation

In the example vecadd [https://github.com/PolyArch/dsa-apps/blob/polyarch/sdk/compiled/vecadd.c],
by simply typing the command below, the generated binaries can be simulated in Gem5.

The explanation is separated into two aspects, the programming interfaces, and the build infrastructures.
To explain the programming interfaces, we provide a set unified interfaces (in this case, declared in
common/interface.h and implemented in vecadd.c) for you to write application kernels and model its performance.



	struct Arguments are the input of the benchmark kernel, which will be initialized by init_data and used as input argument of run_*.


	init_data initializes the input of application. We provide several convinence function macros in common/test.h to initialize the data.


	run_reference is the function invoke the host execution for a golden reference of the application result.


	run_accelerator is the function to invoke the accelerator. The is_warmup indicates if it is cache warmup invocation.


	sanity_check verifies the result of compilation. We provide several convinence function macros in common/test.h to check the result correctness.







Feel free to copy and rename vecadd.c and write other kernels and use the following command to simulate.

% is the name of the the kernel c file without suffix.
All the files share the same main function implemented in common/gem5-harness.c — the main function invokes
each function sequentially, and invokes run_accelerator twice to warm up the cache and time it.

To explain the build infrastructures, we overview the flow of compilation:


	The kernel file is first parsed by our extended clang and generate an LLVM IR file (see vecadd.ll).


	This IR file is fed to an LLVM pass for decoupled-spatial transformation.



	The decoupled memory access are encoded in control commands and embedded in the host assemly code (see ss-vecadd.ll).


	The decoupled computation are in dfg file(s) (see vecadd_%.dfg where % is the unrolling degree).









	The transformed IR is fed to LLVM code generator to generate assembly code (see ss-vecadd.s).


	The generated assembly code will be fed to riscv-gnu linker to generate the binaries (see ss-vecadd.out).




Because Chipyard Rocket core adopts a different model of RISCV CPU as Gem5 implements,
it requires different compilation flags and link options. For the RTL simulation purpose,
by simply type

The Chipyard compatible main function will be linked.








            

          

      

      

    

  

    
      
          
            
  
Embedded ASM and DFG

this is a bunch of filler text. it’s not really important.  it’s just
here to make the demo look more realistic.  it’s not really important.
it’s just here to make the demo look more realistic.  it’s not really
important.  it’s just here to make the demo look more realistic.







            

          

      

      

    

  

    
      
          
            
  
Dataflow Graph

The Dataflow Graph (DFG) is a representation of the dataflow of a program. It is a directed graph where the nodes are the operations and the edges are the data dependencies between the operations. The DFG is a static representation of the dataflow of a program. It is not a representation of the actual dataflow at runtime.

The Compiler automatically creates DFG files. The DFG files are used by the simulator and scheduler to map onto the actual hardware. DFG files can also be manually created, this section acts as a reference on reading and creating custom DFG files.



	DFG File Format

	DFG File Examples








            

          

      

      

    

  

    
      
          
            
  
DFG File Format

The dfgfile contains 4 parts:


	Array Declaration


	Port Declaration


	Operation Declaration


	Meta-level information




We will go through each of these sections seperately.


Array Declaration

Arrays can be declared with the following Format

[array-type] <array-name> <size>

where the array-type can be one of the following:
* dma - Direct Memory Access
* spm - Scratchpad
* rec - Recurrance
* gen - Generate
* reg - Register



Port Declaration

Inputs can be declared with the following format:

Input[Size] <input-name>[<vectorization-degree>] source=<array-name> [stated]

Correspondingly, Outputs can be declared with the following format:

Output[Size] <output-name>[<vectorization-degree>] destination=<array-name> [stated]

Size refers to the datatype size. For instance, Input64 would assume a 64-bit stream while a Input32 would assume a 32-bit stream. If no size is specified, the scheduler will default to creating a 64-bit stream.

Note: The scheduler currently supports decomposible routing. Thus, it can combine different datatypes. However, this is not currently supported by the hardware generator and simulator. Thus, it is recommended to use the same datatype for all streams. We plan to fix this in an upcoming release.

The vectorization degree refers to the number of elements in the stream. For instance, Input64[2] would assume a 64-bit stream with 2 elements. If no vectorization degree is specified, the scheduler will default to creating a 1-element stream.

The source and destination fields refer to the array that the input and output are mapped to. An edge will be created from the specified array to the input/output port.

Stated refers to the first element of the stream being used as a control element within a Operation. By default, ports are not stated and if the ‘stated’ keyword is specified, the port will be stated.


Routing Ports

Port variable names will automatically be created under the format:

<input/output-name>_<element-number>

Thus, if we declared a port with the name foo and the vectorization degree of 2, the data elements would be named foo_0 and foo_1.

Additionally, the stated element (if the port is stated) will be created under the format:

<input/output-name>_State

These variables can be directly used within future operations. Additionally elements can be renamed with the following format:

<new_name> = <old-name>

The compiler uses this naming feature to rename the final operation results to the name of the output port.



Optional Port Reuse Pragmas

The compiler automatically generates pragmas describing memory stream reuse information. These pragmas are optional; they are not used in scheduling the DFG to the ADG and only used by the DSE performance models.

The compiler generates the following pragmas for both input and output ports:

#pragma cmd <cmd-coefficient>
#pragma repeat <repeat-rate>
#pragma reuse <reuse-rate>

The cmd coefficient refers to a bound on the memory traffic for a stream, due to a command required to load the data. For instance, in a indirect access stream where the address must be generated by scalar operations, the cmd increases. By default cmd is 1.

The repeat rate refers to the number of times a stream is repeated. For instance, if a stream is used in a loop, the repeat rate is the number of times the loop is executed. By default, the repeat rate is 1.

The reuse rate refers to the number of times a stream is reused by the L2 cache. In the compiler, this is generated by a reuse analysis pass. By default, the reuse rate is 0.



Operation Declaration and Mapping

Operations can be declared with the following format:

<operation-result> = <operation-name>(<operation-arguments>)

where the operation-name can be any operation described within the ISA. The operation-arguments are the inputs to the operation. Each operation argument should be seperated by a comma. The operation-result is the output of the operation.



Stated Operation

Operations that utilize the stated control argument have the additional parameter as follows:

ctrl=$<Port-Name>_State & 8{0: d, 8: r}

This declares that the result will depend upon the first 8 bits of the stated link.




Meta-level Information

Each DFG-file can have multiple subgraphs. Each subgraph is seperated by:

—-

The compiler always produces the first sub-dfg as the array-declaration. Variables within different sub-dfgs should be named seperately and the Arrays are the only variable that can be used across multiple sub-dfgs

Subdfgs have the following optional pragmas:

#pragma group frequency <code-execution-frequency>
#pragma group unroll <vectorization-degree>

The frequency pragma refers to the code-execution frequency of the sub-dfg. This code frequency will be used by the DSE performance models to determine relative execution time for each sub-dfg. By default, the frequency is 1.

The unroll pragma refers to the vectorization degree of the sub-dfg. This pragma is currently only used when determing recurrance bottleneck. By default, the unroll degree is 1.

The DFG parser also supports comments with lines that are preceded by a hashtag (#). The last line of the dfgfile must also be a blank space.








            

          

      

      

    

  

    
      
          
            
  
DFG File Examples


Accumulate Example

The following is an example of a DFG file for a non-vectorized add operation:

# Declare sub-dfg meta properties
# Frequency is 0 as no work happens in this sub-dfg
#pragma group frequency 0

# Array Declaration
Array: array_a 131072 dma
Array: array_b 131072 dma

----
# Declare sub-dfg meta properties

#pragma group frequency 255
#pragma group unroll 1

# Port Declaration
Input64: a source=array_a
Input64: b source=array_b

# Operation Declaration
c = Add_I64(a, b)

# Output Declaration
Output64: c destination=array_a





This produces a dataflow graph that looks like the following:

[image: ../_images/accumulate.png]


Acc Vectorization Example

The following is an example of a DFG file for a vectorized-by-four add operation:

# Declare sub-dfg meta properties
# Frequency is 0 as no work happens in this sub-dfg
#pragma group frequency 0

# Array Declaration
Array: array_a 131072 dma
Array: array_b 131072 dma

----
# Declare sub-dfg meta properties

#pragma group frequency 255
#pragma group unroll 4

# Port Declaration
Input64: a_[4] source=array_a
Input64: b_[4] source=array_b

# Operation Declaration
c_0 = Add_I64(a_0, b_1)
c_1 = Add_I64(a_1, b_1)
c_2 = Add_I64(a_2, b_2)
c_3 = Add_I64(a_3, b_3)

# Output Declaration
Output64: c_[4] destination=array_b





This produces a dataflow graph that looks like the following:

[image: ../_images/accumulate_vectorized.png]


Complex Example

This is an example of a manually programmed DFG for the Stencil-2d workload.

# Declare sub-dfg meta properties
# Frequency is 0 as no work happens in this sub-dfg
#pragma group frequency 0


# Array Declaration
Array: a 9248 dma
Array: b 8192 dma

----
# Declare sub-dfg meta properties
# Most of the work happens here so we can set the frequency to 90 or 90%
#pragma group frequency 90
#pragma group unroll 1

# Declare the input ports

#pragma reuse=0.66
Input64: A source=a
#pragma reuse=0.66
Input64: B source=a
#pragma reuse=0.66
Input64: C source=a

# Do the operations
MUL_0A = Mul_I64(A, $Reg0)
MUL_0B = Mul_I64(B, $Reg0)
MUL_0C = Mul_I64(C, $Reg0)

TMPS0 = Add_I64(MUL_0A, MUL_0B)
PSUM0 = Add_I64(MUL_0C, TMPS0)

SHIFT0_REG0 = Add_I64(PSUM0, $Reg0)
SHIFT0_REG1 = Add_I64(SHIFT0_REG0, $Reg0)

MUL_1A = Mul_I64(A, $Reg0)
MUL_1B = Mul_I64(B, $Reg0)
MUL_1C = Mul_I64(C, $Reg0)

TMPS1 = Add_I64(MUL_1A, MUL_1B)
PSUM1 = Add_I64(MUL_1C, TMPS1)

SHIFT1_REG0 = Add_I64(PSUM1, $Reg0)

MUL_2A = Mul_I64(A, $Reg0)
MUL_2B = Mul_I64(B, $Reg0)
MUL_2C = Mul_I64(C, $Reg0)

TMPS2 = Add_I64(MUL_2A, MUL_2B)
PSUM2 = Add_I64(MUL_2C, TMPS2)

PSUM3 = Add_I64(SHIFT0_REG1, SHIFT1_REG0)
O = Add_I64(PSUM3, PSUM2)

# Declare the output ports (there is no reuse)
Output64: O destination=b

----
# Declare sub-dfg meta properties
#pragma group frequency 3

# These are indirect stream generators
Input64: InA source=a
OutA = InA
Output64: OutA destination=a

----
# Declare sub-dfg meta properties
#pragma group frequency 3

# These are indirect stream generators

Input64: InB source=a
OutB = InB
Output64: OutB destination=a

----
# Declare sub-dfg meta properties
#pragma group frequency 3

# These are indirect stream generators

Input64: InC source=a
OutC = InC
Output64: OutC destination=a





The resulting dataflow graph looks like the following:

[image: ../_images/stencil2d.png]







            

          

      

      

    

  

    
      
          
            
  
Architecture Description Graph

The Architecture Description Graph describes the underlying CGRA hardware capabilities. It is a directive graph between different hardware nodes.

The ADG is generated by both the chipyard generator and as a result of the Design Space Explorer (DSE). The ADG also serves as an input into both the DSE and Chipyard generator, to create better hardware designs and simulate capabilites. The scheduler schedules DFG graphs onto the ADG.



	ADG File Format

	ADG Visualization

	ADG File Example








            

          

      

      

    

  

    
      
          
            
  
ADG File Format

ADG Files contain two parts:


	ADG Module Declaration


	ADG Link Declaration





ADG Module Declaration

The ADG is composed of different hardware modules, or nodes, with each containing their own attributes. Broadly, the ADG demarcates three different node types (spatial, sync, and data nodes) based on their typical placement and function within the adg.


Spatial Nodes

Spatial Nodes perform the computation and routing network inside the ADG. Consisting of processing elements and switches, these nodes are interlinked, performing computation and recieving inputs/outputs from the sync nodes.


Processing Elements

Processing Elements are the basic computational unit of the ADG. They are the nodes that perform the actual computation. Each processing element has a set of defined operations, taking inputs and then performing the operation upon it.

Passthroughs

Processing Elements can act as passthroughs, or perform the copy operation, during scheduling. This is useful to allow generality in scheduling.



Switches

Switches perform routing within the ADG, allowing greater generality in designs. In hardware, switches act as a series of muxes allowing data to move from any input to any output.

Broadcast

Switches are also helpful as they have the capability to broadcast, or one input go to two different outputs. This functionality is required for several schedules where broadcasting is needed. Processing elements are not able to broadcast data.



Spatial Node Properties

Fifo Depths

Each spatial node has a fifo, allowing it to balance delays and hopefully remove pipeline stalls. These fifos can be set by the fifo_depth property. Currently, the fifo can’t be eliminated without potentially hurting the frequency, thus the fifo depth must be set to at least 1.




Sync Nodes

Sync Nodes bring data into the spatial architecture from the data. It consists of input vector ports and output vector ports.


Input Vector Ports

Input vector ports act as the input. They generate the data requests and stream data into the spatial part of the ADG.



Output Vector Ports

Output vector ports act as the output. These hardware modules take data produced from the spatial architecture and then feed them into different data nodes.



Sync Node Properties

Stated

Both Input and Output Vector ports can be stated, meaning the first link is reserved for the stated control inputs from the DFG.




Data Nodes

Data nodes interact with memory, and deal with streaming requests and different levels of the memory heirarchy. Currently, there are 5 different data node types, DMA, Scratchpad, Recurrance, Generate, and Register. Each node performs different types of data movement, and has its own associated functionality.


DMA

DMA nodes stream data from the DRAM and L2 cache.



Scratchpad

Scratchpad nodes act as a private cache for each accelerator tile. The scratchpad has an associated size and is replicated within each tile.



Recurrance

Recurrance Nodes directly stream data from the output back into the input vector port.



Generate



Register



Data Node Properties

Data Nodes all interconnect on a bus. Thus, the bandwidth mechanism works similarly for all data nodes, depending on their replication across cores.










            

          

      

      

    

  

    
      
          
            
  
ADG Visualization

We have developed two different methods (one using graphviz and another using html) to visualize the adg, each having their own tradeoffs. Both these methods are useful in gaining an underlying insight into ADG structure.


Using Dot Files

To get an ADG Graphviz file, you must first run the scheduler using the following command:

ss_sched adg.json -f





A graphviz file should appear in the newly created viz directory. To view the dot file, you must first install the graphviz package. Then, you can run the following command:

dot -Tpng viz/adg.gv -o viz/adg.png





Alternatively, we have found more structured results using:

neato -Goverlap=false -Gstart=self -Gepsilon=.0000001 -Tpng -o viz/adg.png viz/adg.gv







Visualizing Using HTML

To get a HTML visualization of the ADG, you must run the python script adg_visualize.py on the file specified file. Thus, it looks like this:

python3 adg_visualize.py adg.json





Then, you can open the generated html file in your browser to view the ADG. This script is interactive, allowing a rearrangement of modules. We have also found the physics-based simulation to be more instructive, producing a grid-like format for mesh designs, which hasn’t necessarily been true of graphviz-based designs.








            

          

      

      

    

  

    
      
          
            
  
ADG File Example

The following is an example of an ADG File that is a 2 x 2 Mesh, with 2 input ports and 2 output ports. The processing elements all only have one operation, and the data engines are connected to every port:

{
"DSAGenNodes" : {
    "ProcessingElement.0" : {
    "ConfigBitEncode" : {
        "Enabled" : [ 0, 0 ],
        "Instruction_0_Valid" : [ 1, 1 ],
        "Instruction_0_OperandSel_0" : [ 4, 2 ],
        "Instruction_0_OperandSel_1" : [ 7, 5 ],
        "Instruction_0_CtrlMode" : [ 9, 8 ],
        "Instruction_0_CtrlInputSel" : [ 12, 10 ],
        "Instruction_0_Opcode" : [ 16, 13 ],
        "Instruction_0_ResultOut_0" : [ 17, 17 ],
        "Instruction_0_ResultReg_0" : [ 18, 18 ],
        "Instruction_0_Latency" : [ 21, 19 ],
        "MetaCtrlEntry_0_valid" : [ 22, 22 ],
        "MetaCtrlEntry_0_reuseOperand" : [ 24, 23 ],
        "MetaCtrlEntry_0_discardResult" : [ 25, 25 ],
        "MetaCtrlEntry_0_resetReg" : [ 26, 26 ],
        "MetaCtrlEntry_0_abstain" : [ 27, 27 ],
        "MetaCtrlEntry_1_valid" : [ 28, 28 ],
        "MetaCtrlEntry_1_reuseOperand" : [ 30, 29 ],
        "MetaCtrlEntry_1_discardResult" : [ 31, 31 ],
        "MetaCtrlEntry_1_resetReg" : [ 32, 32 ],
        "MetaCtrlEntry_1_abstain" : [ 33, 33 ],
        "MetaCtrlEntry_2_valid" : [ 34, 34 ],
        "MetaCtrlEntry_2_reuseOperand" : [ 36, 35 ],
        "MetaCtrlEntry_2_discardResult" : [ 37, 37 ],
        "MetaCtrlEntry_2_resetReg" : [ 38, 38 ],
        "MetaCtrlEntry_2_abstain" : [ 39, 39 ],
        "MetaCtrlEntry_3_valid" : [ 40, 40 ],
        "MetaCtrlEntry_3_reuseOperand" : [ 42, 41 ],
        "MetaCtrlEntry_3_discardResult" : [ 43, 43 ],
        "MetaCtrlEntry_3_resetReg" : [ 44, 44 ],
        "MetaCtrlEntry_3_abstain" : [ 45, 45 ]
    },
    "dsagen2.comp.config.CompKeys$CompNode$" : {
        "compBits" : 64,
        "comment" : "row0_col0",
        "parameterClassName" : "dsagen2.comp.config.CompNodeParameters",
        "compUnitBits" : 64,
        "nodeType" : "ProcessingElement",
        "nodeId" : 0,
        "supportNodeActive" : true
    },
    "dsagen2.comp.config.CompKeys$OutputBuffer$" : {
        "outputBufferDepth" : 4,
        "parameterClassName" : "dsagen2.comp.config.common.CompNodeOutputBufferParameters",
        "staticOutputBuffer" : false
    },
    "dsagen2.comp.config.CompKeys$RegFile$" : {
        "numReg" : 1,
        "asyncRF" : true,
        "update" : true,
        "parameterClassName" : "dsagen2.comp.config.processing_element.PERegFileParameters",
        "resetRegIdx" : [ 0 ]
    },
    "dsagen2.comp.config.CompKeys$MetaControl$" : {
        "outputLSBCtrl" : true,
        "sizeLUT" : 4,
        "abstain" : true,
        "parameterClassName" : "dsagen2.comp.config.processing_element.PEMetaCtrlParameters",
        "inputLSBCtrl" : true,
        "reuseOperand" : true,
        "resetRegister" : true,
        "discardResult" : true
    },
    "dsagen2.comp.config.CompKeys$DsaOperations$" : {
        "isDynamic" : true,
        "OperationDataTypeSet" : [ "Copy", "Add_I64", "FAdd_D64", "FMul_D64", "FSub_D64", "Max_I64", "Min_I64", "Mul_I64", "Sub_I64" ],
        "maxInstRepeatTime" : 0,
        "definedLatency" : 0,
        "parameterClassName" : "dsagen2.comp.config.processing_element.PEDsaOperationParameters",
        "instSlotSize" : 1,
        "maxFifoDepth" : 4
    }
    },
    "Switch.3" : {
    "ConfigBitEncode" : {
        "Enabled" : [ 0, 0 ],
        "SwitchRouting$_0_SubNet_0" : [ 3, 1 ],
        "SwitchRouting$_1_SubNet_0" : [ 6, 4 ],
        "SwitchRouting$_2_SubNet_0" : [ 9, 7 ],
        "SwitchRouting$_3_SubNet_0" : [ 12, 10 ]
    },
    "dsagen2.comp.config.CompKeys$CompNode$" : {
        "compBits" : 64,
        "comment" : "row1_col1",
        "parameterClassName" : "dsagen2.comp.config.CompNodeParameters",
        "compUnitBits" : 64,
        "nodeType" : "Switch",
        "nodeId" : 3,
        "supportNodeActive" : true
    },
    "dsagen2.comp.config.CompKeys$OutputBuffer$" : {
        "outputBufferDepth" : 4,
        "parameterClassName" : "dsagen2.comp.config.common.CompNodeOutputBufferParameters",
        "staticOutputBuffer" : false
    },
    "dsagen2.comp.config.CompKeys$SwitchRouting$" : {
        "initFullMatrix" : [ ],
        "parameterClassName" : "dsagen2.comp.config.switch.SWRoutingParameters",
        "initIndividualMatrix" : [ ]
    }
    },
    "Switch.2" : {
    "ConfigBitEncode" : {
        "Enabled" : [ 0, 0 ],
        "SwitchRouting$_0_SubNet_0" : [ 2, 1 ],
        "SwitchRouting$_1_SubNet_0" : [ 4, 3 ],
        "SwitchRouting$_2_SubNet_0" : [ 6, 5 ],
        "SwitchRouting$_3_SubNet_0" : [ 8, 7 ]
    },
    "dsagen2.comp.config.CompKeys$CompNode$" : {
        "compBits" : 64,
        "comment" : "row1_col0",
        "parameterClassName" : "dsagen2.comp.config.CompNodeParameters",
        "compUnitBits" : 64,
        "nodeType" : "Switch",
        "nodeId" : 2,
        "supportNodeActive" : true
    },
    "dsagen2.comp.config.CompKeys$OutputBuffer$" : {
        "outputBufferDepth" : 4,
        "parameterClassName" : "dsagen2.comp.config.common.CompNodeOutputBufferParameters",
        "staticOutputBuffer" : false
    },
    "dsagen2.comp.config.CompKeys$SwitchRouting$" : {
        "initFullMatrix" : [ ],
        "parameterClassName" : "dsagen2.comp.config.switch.SWRoutingParameters",
        "initIndividualMatrix" : [ ]
    }
    },
    "Switch.1" : {
    "ConfigBitEncode" : {
        "Enabled" : [ 0, 0 ],
        "SwitchRouting$_0_SubNet_0" : [ 2, 1 ],
        "SwitchRouting$_1_SubNet_0" : [ 4, 3 ],
        "SwitchRouting$_2_SubNet_0" : [ 6, 5 ],
        "SwitchRouting$_3_SubNet_0" : [ 8, 7 ]
    },
    "dsagen2.comp.config.CompKeys$CompNode$" : {
        "compBits" : 64,
        "comment" : "row0_col1",
        "parameterClassName" : "dsagen2.comp.config.CompNodeParameters",
        "compUnitBits" : 64,
        "nodeType" : "Switch",
        "nodeId" : 1,
        "supportNodeActive" : true
    },
    "dsagen2.comp.config.CompKeys$OutputBuffer$" : {
        "outputBufferDepth" : 4,
        "parameterClassName" : "dsagen2.comp.config.common.CompNodeOutputBufferParameters",
        "staticOutputBuffer" : false
    },
    "dsagen2.comp.config.CompKeys$SwitchRouting$" : {
        "initFullMatrix" : [ ],
        "parameterClassName" : "dsagen2.comp.config.switch.SWRoutingParameters",
        "initIndividualMatrix" : [ ]
    }
    },
    "Switch.0" : {
    "ConfigBitEncode" : {
        "Enabled" : [ 0, 0 ],
        "SwitchRouting$_0_SubNet_0" : [ 2, 1 ],
        "SwitchRouting$_1_SubNet_0" : [ 4, 3 ],
        "SwitchRouting$_2_SubNet_0" : [ 6, 5 ],
        "SwitchRouting$_3_SubNet_0" : [ 8, 7 ]
    },
    "dsagen2.comp.config.CompKeys$CompNode$" : {
        "compBits" : 64,
        "comment" : "row0_col0",
        "parameterClassName" : "dsagen2.comp.config.CompNodeParameters",
        "compUnitBits" : 64,
        "nodeType" : "Switch",
        "nodeId" : 0,
        "supportNodeActive" : true
    },
    "dsagen2.comp.config.CompKeys$OutputBuffer$" : {
        "outputBufferDepth" : 4,
        "parameterClassName" : "dsagen2.comp.config.common.CompNodeOutputBufferParameters",
        "staticOutputBuffer" : false
    },
    "dsagen2.comp.config.CompKeys$SwitchRouting$" : {
        "initFullMatrix" : [ ],
        "parameterClassName" : "dsagen2.comp.config.switch.SWRoutingParameters",
        "initIndividualMatrix" : [ ]
    }
    },
    "RecurrenceEngine.0" : {
    "dsagen2.mem.config.MemKeys$MemNode$" : {
        "numWrite" : 1,
        "memUnitBits" : 8,
        "numRead" : 1,
        "MaxLength1D" : 2147483646,
        "parameterClassName" : "dsagen2.mem.config.MemNodeParameters",
        "MaxLength3D" : 0,
        "capacity" : 16384,
        "LinearLength1DStream" : false,
        "numGenDataType" : 0,
        "LinearPadding" : true,
        "MaxAbsStretch3D2D" : 0,
        "NumLength1DUnitBitsExp" : 0,
        "MaxAbsStride3D" : 0,
        "MaxAbsStride1D" : 1,
        "IndirectStride2DStream" : false,
        "AtomicOperations" : [ ],
        "NumIdxUnitBitsExp" : 0,
        "MaxAbsDeltaStride2D" : 0,
        "LinearStride2DStream" : false,
        "MaxLength2D" : 0,
        "MaxAbsStretch2D" : 0,
        "nodeType" : "RecurrenceEngine",
        "supportBuffet" : false,
        "numMemUnitBitsExp" : 4,
        "MaxAbsStretch3D1D" : 0,
        "IndirectIndexStream" : false,
        "NumStride2DUnitBitsExp" : 0,
        "writeWidth" : 32,
        "MaxAbsStride2D" : 0,
        "numPendingRequest" : 0,
        "readWidth" : 32,
        "nodeId" : 0,
        "streamStated" : true,
        "numSpmBank" : 0,
        "IndirectLength1DStream" : false,
        "MaxAbsDeltaStretch2D" : 0
    }
    },
    "RegisterEngine.0" : {
    "dsagen2.mem.config.MemKeys$MemNode$" : {
        "numWrite" : 1,
        "memUnitBits" : 8,
        "numRead" : 1,
        "MaxLength1D" : 0,
        "parameterClassName" : "dsagen2.mem.config.MemNodeParameters",
        "MaxLength3D" : 0,
        "capacity" : 16384,
        "LinearLength1DStream" : false,
        "numGenDataType" : 0,
        "LinearPadding" : false,
        "MaxAbsStretch3D2D" : 0,
        "NumLength1DUnitBitsExp" : 0,
        "MaxAbsStride3D" : 0,
        "MaxAbsStride1D" : 0,
        "IndirectStride2DStream" : false,
        "AtomicOperations" : [ ],
        "NumIdxUnitBitsExp" : 0,
        "MaxAbsDeltaStride2D" : 0,
        "LinearStride2DStream" : false,
        "MaxLength2D" : 0,
        "MaxAbsStretch2D" : 0,
        "nodeType" : "RegisterEngine",
        "supportBuffet" : false,
        "numMemUnitBitsExp" : 4,
        "MaxAbsStretch3D1D" : 0,
        "IndirectIndexStream" : false,
        "NumStride2DUnitBitsExp" : 0,
        "writeWidth" : 8,
        "MaxAbsStride2D" : 0,
        "numPendingRequest" : 0,
        "readWidth" : 8,
        "nodeId" : 0,
        "streamStated" : true,
        "numSpmBank" : 0,
        "IndirectLength1DStream" : false,
        "MaxAbsDeltaStretch2D" : 0
    }
    },
    "GenerateEngine.0" : {
    "dsagen2.mem.config.MemKeys$MemNode$" : {
        "numWrite" : 0,
        "memUnitBits" : 8,
        "numRead" : 1,
        "MaxLength1D" : 2147483646,
        "parameterClassName" : "dsagen2.mem.config.MemNodeParameters",
        "MaxLength3D" : 0,
        "capacity" : 16384,
        "LinearLength1DStream" : true,
        "numGenDataType" : 4,
        "LinearPadding" : true,
        "MaxAbsStretch3D2D" : 0,
        "NumLength1DUnitBitsExp" : 4,
        "MaxAbsStride3D" : 0,
        "MaxAbsStride1D" : 1,
        "IndirectStride2DStream" : true,
        "AtomicOperations" : [ ],
        "NumIdxUnitBitsExp" : 4,
        "MaxAbsDeltaStride2D" : 0,
        "LinearStride2DStream" : true,
        "MaxLength2D" : 2147483646,
        "MaxAbsStretch2D" : 1073741822,
        "nodeType" : "GenerateEngine",
        "supportBuffet" : false,
        "numMemUnitBitsExp" : 4,
        "MaxAbsStretch3D1D" : 0,
        "IndirectIndexStream" : true,
        "NumStride2DUnitBitsExp" : 4,
        "writeWidth" : 0,
        "MaxAbsStride2D" : 1073741822,
        "numPendingRequest" : 16,
        "readWidth" : 8,
        "nodeId" : 0,
        "streamStated" : true,
        "numSpmBank" : 0,
        "IndirectLength1DStream" : true,
        "MaxAbsDeltaStretch2D" : 0
    }
    },
    "ScratchpadMemory.0" : {
    "dsagen2.mem.config.MemKeys$MemNode$" : {
        "numWrite" : 1,
        "memUnitBits" : 8,
        "numRead" : 1,
        "MaxLength1D" : 2147483646,
        "parameterClassName" : "dsagen2.mem.config.MemNodeParameters",
        "MaxLength3D" : 0,
        "capacity" : 524288,
        "LinearLength1DStream" : true,
        "numGenDataType" : 0,
        "LinearPadding" : true,
        "MaxAbsStretch3D2D" : 0,
        "NumLength1DUnitBitsExp" : 4,
        "MaxAbsStride3D" : 0,
        "MaxAbsStride1D" : 1,
        "IndirectStride2DStream" : true,
        "AtomicOperations" : [ ],
        "NumIdxUnitBitsExp" : 4,
        "MaxAbsDeltaStride2D" : 0,
        "LinearStride2DStream" : true,
        "MaxLength2D" : 2147483646,
        "MaxAbsStretch2D" : 1073741822,
        "nodeType" : "ScratchpadMemory",
        "supportBuffet" : false,
        "numMemUnitBitsExp" : 4,
        "MaxAbsStretch3D1D" : 0,
        "IndirectIndexStream" : true,
        "NumStride2DUnitBitsExp" : 4,
        "writeWidth" : 32,
        "MaxAbsStride2D" : 1073741822,
        "numPendingRequest" : 16,
        "readWidth" : 32,
        "nodeId" : 0,
        "streamStated" : true,
        "numSpmBank" : 4,
        "IndirectLength1DStream" : true,
        "MaxAbsDeltaStretch2D" : 0
    }
    },
    "DirectMemoryAccess.0" : {
    "dsagen2.mem.config.MemKeys$MemNode$" : {
        "numWrite" : 1,
        "memUnitBits" : 8,
        "numRead" : 1,
        "MaxLength1D" : 2147483646,
        "parameterClassName" : "dsagen2.mem.config.MemNodeParameters",
        "MaxLength3D" : 0,
        "capacity" : 1099511627776,
        "LinearLength1DStream" : true,
        "numGenDataType" : 0,
        "LinearPadding" : true,
        "MaxAbsStretch3D2D" : 0,
        "NumLength1DUnitBitsExp" : 4,
        "MaxAbsStride3D" : 0,
        "MaxAbsStride1D" : 1,
        "IndirectStride2DStream" : true,
        "AtomicOperations" : [ "Add", "Sub", "Min", "Max" ],
        "NumIdxUnitBitsExp" : 4,
        "MaxAbsDeltaStride2D" : 0,
        "LinearStride2DStream" : true,
        "MaxLength2D" : 2147483646,
        "MaxAbsStretch2D" : 1073741822,
        "nodeType" : "DirectMemoryAccess",
        "supportBuffet" : false,
        "numMemUnitBitsExp" : 4,
        "MaxAbsStretch3D1D" : 0,
        "IndirectIndexStream" : true,
        "NumStride2DUnitBitsExp" : 4,
        "writeWidth" : 32,
        "MaxAbsStride2D" : 1073741822,
        "numPendingRequest" : 16,
        "readWidth" : 32,
        "nodeId" : 0,
        "streamStated" : true,
        "numSpmBank" : 0,
        "IndirectLength1DStream" : true,
        "MaxAbsDeltaStretch2D" : 0
    }
    },
    "InputVectorPort.1" : {
    "dsagen2.sync.config.SyncKeys$IVPNode$" : {
        "vpImpl" : 0,
        "vpStated" : true,
        "parameterClassName" : "dsagen2.sync.config.IVPNodeParameters",
        "depthByte" : 2,
        "nodeType" : "InputVectorPort",
        "repeatedIVP" : true,
        "nodeId" : 1,
        "broadcastIVP" : true
    }
    },
    "InputVectorPort.0" : {
    "dsagen2.sync.config.SyncKeys$IVPNode$" : {
        "vpImpl" : 0,
        "vpStated" : true,
        "parameterClassName" : "dsagen2.sync.config.IVPNodeParameters",
        "depthByte" : 2,
        "nodeType" : "InputVectorPort",
        "repeatedIVP" : true,
        "nodeId" : 0,
        "broadcastIVP" : true
    }
    },
    "OutputVectorPort.1" : {
    "dsagen2.sync.config.SyncKeys$OVPNode$" : {
        "vpImpl" : 0,
        "discardOVP" : true,
        "vpStated" : true,
        "parameterClassName" : "dsagen2.sync.config.OVPNodeParameters",
        "taskOVP" : true,
        "depthByte" : 2,
        "nodeType" : "OutputVectorPort",
        "nodeId" : 1
    }
    },
    "OutputVectorPort.0" : {
    "dsagen2.sync.config.SyncKeys$OVPNode$" : {
        "vpImpl" : 0,
        "discardOVP" : true,
        "vpStated" : true,
        "parameterClassName" : "dsagen2.sync.config.OVPNodeParameters",
        "taskOVP" : true,
        "depthByte" : 2,
        "nodeType" : "OutputVectorPort",
        "nodeId" : 0
    }
    }
},
"DSAGenEdges" : [ {
    "SourceNodeType" : "DirectMemoryAccess",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "InputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "DirectMemoryAccess",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 1,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "DirectMemoryAccess",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "ScratchpadMemory",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "ScratchpadMemory",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 0,
    "SinkNodeType" : "DirectMemoryAccess",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "InputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 1,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 2,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "ScratchpadMemory",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "GenerateEngine",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 2,
    "SinkNodeType" : "GenerateEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 1,
    "SinkNodeType" : "ScratchpadMemory",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 0,
    "SourceIndex" : 2,
    "SinkNodeType" : "ProcessingElement",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "InputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 0,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 2,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "RecurrenceEngine",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 3
}, {
    "SourceNodeType" : "GenerateEngine",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 3,
    "SinkNodeType" : "RecurrenceEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 2,
    "SinkNodeType" : "GenerateEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 1,
    "SourceIndex" : 0,
    "SinkNodeType" : "ProcessingElement",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "RecurrenceEngine",
    "SourceNodeId" : 0,
    "SourceIndex" : 1,
    "SinkNodeType" : "InputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 3
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 0,
    "SourceIndex" : 4,
    "SinkNodeType" : "RegisterEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 3,
    "SinkNodeType" : "RecurrenceEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 2,
    "SourceIndex" : 0,
    "SinkNodeType" : "ProcessingElement",
    "SinkNodeId" : 0,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "OutputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 4,
    "SinkNodeType" : "RegisterEngine",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 3,
    "SourceIndex" : 0,
    "SinkNodeType" : "ProcessingElement",
    "SinkNodeId" : 0,
    "SinkIndex" : 3
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 2,
    "SourceIndex" : 1,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 3,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 3,
    "SourceIndex" : 1,
    "SinkNodeType" : "OutputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 1,
    "SourceIndex" : 1,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 3,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 2,
    "SourceIndex" : 2,
    "SinkNodeType" : "OutputVectorPort",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 3,
    "SourceIndex" : 2,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 2,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "InputVectorPort",
    "SourceNodeId" : 1,
    "SourceIndex" : 1,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 3,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 1,
    "SourceIndex" : 2,
    "SinkNodeType" : "OutputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 0
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 3,
    "SourceIndex" : 3,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 1,
    "SinkIndex" : 2
}, {
    "SourceNodeType" : "ProcessingElement",
    "SourceNodeId" : 0,
    "SourceIndex" : 0,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 3,
    "SinkIndex" : 3
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 0,
    "SourceIndex" : 3,
    "SinkNodeType" : "OutputVectorPort",
    "SinkNodeId" : 1,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 1,
    "SourceIndex" : 3,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 0,
    "SinkIndex" : 1
}, {
    "SourceNodeType" : "Switch",
    "SourceNodeId" : 2,
    "SourceIndex" : 3,
    "SinkNodeType" : "Switch",
    "SinkNodeId" : 0,
    "SinkIndex" : 2
} ]
}





Visualized, this adg would look like the following:







            

          

      

      

    

  

    
      
          
            
  
Spatial Scheduler

This library contains tools to describe, model, and compile/schedule for
spatial architectures. The scheduler acts as an in-between, mapping software programs to decoupled-spatial hardware accelerators.



	Usage Overview

	Spatial Mapping Algorithm

	Spatial Mapping Rules








            

          

      

      

    

  

    
      
          
            
  
Usage Overview

The scheduler is run through by using the ss_sched command. To run the scheduler by default run:

ss_sched [dfg-file] [adg-file] [options]





Optionally, the scheduler includes different flags that can help with compilation. We list these below:


	-v or –verbose


Makes the logging more verbose, providing in-depth information about the scheduler’s progress. This defaults to False.






	-x or –design-explore


Enables Design-Space Exploration (DSE) for the scheduler. See Design Space Exploration.This defaults to False.






	-f or –fpga


Assumes model is using the FPGA-based hardware. Defaults to using ASIC-based hardware.






	-p or –print-bitstream


Dumps the binary bitstream upon successful scheduling. This defaults to False.






	-t or –timeout


Kills scheduling if the process takes longer, in seconds, than the timeout. This defaults to 86400 or 24 hours.






	-m or –max-iters


Maximum scheduling iterations. Oftentimes, the scheduler will reach this before the timeout. This defaults to 20000.






	-e or –seed


Sets the random seed for the scheduler. This defaults to a random value.






	–dse-timeout


Sets the timeout for the DSE process, in seconds. This defaults to -1 or no timeout.






	-w or –sched-workers


The number of workers used during scheduling. Workers schedule different dfg files in parallel. Helpful for when the Design-Space Exploration is enabled. Defaults to 1.






	-h or –help


Prints the help message.









DFG Model

By just supplying the DFG file, the scheduler can print the resulting dataflow graph visualization. For instance, to get a dfg visualization for workload.dfg run:

ss_sched workload.dfg







ADG Model

By just supplying the ADG file, the scheduler can both print the graph and estimate the single-core power/area/resources, depending on whether the FPGA flag is set.

For instance, to get the single-core estimated resource breakdown of the ADG file adg.json:

ss_sched adg.json -f





The schedule will also provide a dot file that can be used to visualize results. However, we recommed using the visualization script described here to get a better visualization.








            

          

      

      

    

  

    
      
          
            
  
Spatial Mapping Algorithm


[image: ../_images/algorithm.png]

Figure 1: The Spatial Scheduler Algorithm



The spatial scheduler workflow is described in Figure 1. In the first step, the spatial scheduler first generates a list of possible candidate placements for each dataflow node. These candidate mappings must follow certain requirements, like ensuring proper bitwidth alignment and the processing element having the correct functions. If any dataflow node does not have any possible candidates, we can safely terminate the scheduling process, as there exists no mapping that works for this dataflow graph.

The spatial scheduler then moves to routing, placing all possible combinations and attempting to find the best possible mapping spot. The spatial scheduler uses Dijkstra’s algorithm to find the shortest path between nodes, creating distinct datapath’s for each edge of the dataflow graph. To evaluate a candidate node mapping’s effectiveness, the spatial scheduler evaluates an objective function, measuring the schedule’s overall performance. If multiple candidate nodes have the same objective score, which frequently happens in practice, then the spatial scheduler will randomly choose a candidate to concretize. The routing process will continue until each dataflow node is mapped onto the spatial accelerator.

Following the routing process, the spatial scheduler calculates overprovisioning and latency factors to be used in the overall objective function. The latency factors are iteratively calculated by gradually tightening the latency bounds of each spatial node within a given edges route.

These factors result in an objective function, measuring a given schedule’s performance, that is compared to prior iterations. If the objective function is described to be good enough (complete, no overprovisioning, sufficient memory access, and lack of latency violations), then the spatial scheduler returns this result. Otherwise, the spatial scheduler randomly unmaps different spatial nodes and repeats the previous steps, until the schedule either completes or fails due to time constraints.


Extra Capabilities

The spatial scheduler currently supports subnetwork and decomposible routing, allowing different software nodes of different sizes being able to schedule onto the same hardware node. This allows a greater exploration space, allowing the scheduler to find potential schedules without needing SIMD instructions. However, the bitstream generation doesn’t currently support subnetwork or decomposible routing, although it will be supported in the future. Thus, utilize this feature at your own risk.








            

          

      

      

    

  

    
      
          
            
  
Spatial Mapping Rules

The following list contains the rules that are used to determine whether a given schedule is valid or not.


	Vertex slots must be mapped to even slots.

Example:

- Invalid:    | ___ | OPA | OPA | ___ |
- Valid:      | OPA | OPA | ___ | ___ |
- Valid:      | ___ | ___ | OPA | OPA |







	Two DFG ports can not be mapped to a single VectorPort.


	The stated dfg edge is always 8 bits wide.


	A stated DFG port can not be mapped to a non-stated vectorport.


	The stated dfg edge is always mapped to a stated VectorPort on bits [0-8]. The first link of a vector port only includes the stated edge.


	The other links of the vectorport are statically assigned according to their value id. A InputPort value can not stradle two different links.


	Memory DFG Edges, or those with either their source or destination vertex being a data node, can’t utilize switches.

Exampe:

- Invalid: SPM0 -> SWITCH0 -> IVP0







	A dfg edge entering a non-switch must come in at an even slot

Example:

- Invalid:    | ___ | OPA | OPA | ___ |
- Valid:      | OPA | OPA | ___ | ___ |
- Valid:      | ___ | ___ | OPA | OPA |







	A switch can map to any contiguous slot.

Example:

- Valid:      | ___ | OPA | OPA | ___ |
- Valid:      | OPA | OPA | ___ | ___ |
- Valid:      | OPA | ___ | ___ | OPA |
- Invalid:    | OPA | ___ | OPA | ___ |







	A lower bitwidth edge must always be mapped to the lower bits of a granularity.

Example:

A 16 bit edge mapped to a Node with granularity 32 and datawidth 64 bit granularity
- Valid: Mapping edge to bits: [0:16] or [32:48]
- Invalid: Mapping edge to bits: [16:32] or [48:64]















            

          

      

      

    

  

    
      
          
            
  
Design Space Explorer



	Usage

	DSE Algorithm








            

          

      

      

    

  

    
      
          
            
  
Usage

The design space explorer is run through by using the ss_sched command, with the -x flag. To run the scheduler by default run:


Important

Currently the Design-Space Explorer only explorers fpga-based accelerators and doesn’t support ASIC-based optimization. Thus it must be run with the -f flag.



The design-space explorer shares the same flags as the default scheduler.:


	-e or –seed


Sets the random seed for the scheduler. This defaults to a random value.






	–dse-timeout


Sets the timeout for the DSE process, in seconds. This defaults to -1 or no timeout.






	-w or –sched-workers


The number of workers used during scheduling. Workers schedule different dfg files in parallel. Defaults to 1.









File Outputs

The design-space explorer outputs a number of files to the vis directory. The files are:


	objectives.csv


A logfile of different dse-iterations. Useful for debugging and visualizing the design-space explorers progress.






	final-schedadg.json


The produced adg file from the dse. Contains extra fields describing the system parameters and information about how the finalized schedules were mapped onto the accelerator.






	prunned-schedadg.json


The prunned version of final-schedadg. Contains extra fields describing the system parameters and information about how the finalized schedules were mapped onto the accelerator.






	iters directory


A directory containing improved schedules. Each time the DSE improves the ADG, it will store that iterations ADG within this folder. This folder is useful for understanding what the DSE did at each iteration.















            

          

      

      

    

  

    
      
          
            
  
DSE Algorithm


[image: ../_images/dse-flow.png]

Figure 1: DSE algorithm



The DSE algorithm is described within Figure 1. The algorithm works in several steps:


	Spatial DSE

In this step, the DSE modifies the inputed ADG. The algorithm randomly decides between adding, removing, or modifying different modular states. The number of modifications is determined by a temperature variable, which is set according to the iteration.



	Spatial Scheduler

After modifying the schedule, the scheduler then attempts to reschedule the modified DSE. If it fails to schedule or is overprovisioned, then the DSE iteration fails at this point and restarts using prior schedules.



	System DSE

During this step, the DSE uses the performance and resource models to determine the system parameters. The DSE fully explores the system parameters, chosing the design with the best performance and most cores, while remaining under full fpga utilization.



	Stochastic Selection

Finally, the dse stocastically chooses a new adg design based upon overall performance and single-core area. The DSE uses iteration number and temperature to determine probability of choosing a new design.











            

          

      

      

    

  

    
      
          
            
  
RTL Generation

This is a guide to using the RTL generation framework.



	Hardware Architecture Overview




	SoC Generation with DSA integrated via DSL/ADG




	Compile Verilator for RTL Simulation




	FPGA flow











            

          

      

      

    

  

    
      
          
            
  
Hardware Architecture Overview

This is a guide to using the RTL generation framework.







            

          

      

      

    

  

    
      
          
            
  
SoC Generation with DSA integrated via DSL/ADG

This is a guide to using the RTL generation framework.







            

          

      

      

    

  

    
      
          
            
  
Compile Verilator for RTL Simulation

This is a guide to using the RTL generation framework.







            

          

      

      

    

  

    
      
          
            
  
FPGA flow

This is a guide to using the RTL generation framework.







            

          

      

      

    

  

    
      
          
            
  
Workloads

Some placeholder text







            

          

      

      

    

  

    
      
          
            
  
API



	DSA Scheduler API








            

          

      

      

    

  

    
      
          
            
  
DSA Scheduler API
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